Analytická geometria v 3D
Vyjadrenie priamky v 3D
Príklad 2
Dané sú dve rôznobežné roviny $\alpha: x-y+z-5=0$ a $\beta: x+2y-7=0$. Nájdite parametrické vyjadrenie priamky $p$, ktorá je priesečnicou daných rovín.Riešenie:
Zo všeobecných rovníc vieme určiť normálové vektory jednotlivých rovín. Normálový vektor roviny $\alpha$ je $\vec{n_{\alpha}}=(1,-1,1)$ a roviny $\beta$ je $\vec{n_{\beta}}=(1,2,0)$. Keďže priamka $p$ je priesečnicou týchto rovín, jej smerový vektor je kolmý na oba normálové vektory. Jeho súradnice určíme vektorovým súčinom $\vec{n_{\alpha}}\times\vec{n_{\beta}}$.
$$
\vec{s_p}=\vec{n_{\alpha}}\times\vec{n_{\beta}}=
\left|\begin{array}{rrr}
\vec{i}&\vec{j}&\vec{k}\\
1&-1&1\\
1&2&0
\end{array} \right|= -2\vec{i}+\vec{j}+3\vec{k}=(-2,1,3)
$$
Smerový vektor priamky $p$ má súradnice $(-2,1,3)$.
Aby sme mohli napísať parametrické rovnice priamky v 3D potrebujeme zistiť súradnice bodu, ktorý patrí jednej a zároveň druhej rovine.
Nájsť taký bod znamená vyriešiť sústavu dvoch rovníc s troma neznámymi.
$$\begin{array}{ccc}
x-y+z-5&=&0\\
x+2y-7&=&0
\end{array}$$
Táto sústava lineárnych rovníc má nekonečne veľa riešení. Jej riešenia sú v tvare usporiadaných trojíc a predstavujú jednotlivé body patriace priesečnici dvoch rovín, teda priamke $p$. K vyjadreniu parametrických rovníc priamky stačí zistiť súradnice jedného bodu, teda jedno z nekonečne veľa riešení sústavy rovníc.
Označme tento bod písmenom $K$.
Sústava rovníc má jednu voľnú premennú. Nech je to premenná $y$. Zvoľme za $y=0$, potom dostávame sústavu dvoch rovníc s dvoma neznámymi
$$\begin{array}{ccc}
x+z-5&=&0\\
x-7&=&0
\end{array},$$
ktorá má riešenie $x=7$ a $z=-2$.
Súradnice hľadaného bodu $K=[7,0,-2]$.
Parametrické vyjadrenie priamky $p$ v 3D je
$$
p:\begin{cases}
x= 7-2t\\
y= 0+t\\
z= -2+3t, t\in\mathrm{R}
\end{cases}
$$